\square

Fourth Semester B.E. Degree Examination, June/July 2015 Engineering Mathematics - IV

Time: 3 hrs.
Max. Marks:100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Obtain $y(0.2)$ using Picards method upto second iteration for the initial value problem
$\frac{d y}{d x}=x^{2}-2 y \quad y(0)=1$.
(06 Marks)
b. Solve by Eulers modified method to obtain $y(1.2)$ given $y^{\prime}=\frac{y+x}{y^{2}-x} y(1)=2$.
(07 Marks)
c. Using Adam Bash forth method obtain y at $\mathrm{x}=0.8$ given
(07 Marks) $\frac{d y}{d x}=x-y^{2}, y(0)=0, y(0.2)=0.02, y(0.4)=0.0795$ and $y(0.6)=0.1762$.

2 a. Solve by $4^{\text {th }}$ order Runge Kutta method simultaneous equations given by $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{y}-\mathrm{t}, \quad \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{x}+\mathrm{t}$ with $\mathrm{x}=1=\mathrm{y}$ at $\mathrm{t}=0$, obtain $\mathrm{y}(0.1)$ and $\mathrm{x}(0.1)$.
(06 Marks)
b. Solve $\frac{d^{2} y}{d x^{2}}-x\left(\frac{d y}{d x}\right)^{2}+y^{2}=0, y(0)=1, \quad y^{\prime}(0)=0$. Evaluate $y(0.2)$ correct to four decimal places, using Runge Kutta method of fourth order.
(07 Marks)
c. Solve for $\mathrm{x}=0.4$ using Milnes predictor corrector formula for the differential equation $y^{\prime \prime}+x y^{\prime}+y=0$ with $y(0)=1, \quad y(0.1)=0.995, y(0.2)=0.9802$ and $y(0.3)=0.956$. Also $z(0)=0, z(0.1)=-0.0995, \quad z(0.2)=-0.196, z(0.3)=-0.2863$.
(07 Marks)
3 a. Verify whether $f(z)=\sin 2 z$ is analytic, hence obtain the derivative.
(06 Marks)
b. Determine the analytic function $f(z)$ whose imaginary part is $\frac{y}{x^{2}+y^{2}}$.
(07 Marks)
c. Define a harmonic function. Prove that real and imaginary parts of an analytic function are harmonic.
(07 Marks)

4
a. Under the mapping $w=e^{z}$, find the image of i) $1 \leq x \leq 2 \quad$ ii) $\pi / 3<y<\frac{\pi}{2}$.
(06 Marks)
b. Find the bilinear transformation which maps the points $1, i,-1$ from z plane to $2, i,-2$ into w
plane. Also find the fixed points.
c. State and prove Cauchy's integral formula.
(07 Marks)
(07 Marks)

PART - B

5
a. Prove $J_{n}(x)=\frac{x}{2 n}\left[J_{n-1}(x)+J_{n+1}(x)\right]$.
b. Prove $(n+1) P_{n}(x)=(2 n+1) \times P_{n}(x)-n P_{n-1}(x)$.
c. Explain the following in terms of Legendres polynomials. $x^{4}+3 x^{3}-x^{2}+5 x-2$

6 a. A class has 10 boys and 6 girls. Three students are selected at random one after another. Find the probability that i) first and third are boys, second a girl ii) first and second are of same sex and third is of opposite sex.
(06 Marks)
b. If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B} / \mathrm{A})=0.9, \mathrm{P}(\overline{\mathrm{B}} / \overline{\mathrm{A}})=0.6$. Find $\mathrm{P}(\mathrm{A} / \mathrm{B}), \mathrm{P}(\mathrm{A} / \overline{\mathrm{B}})$.
(07 Marks)
c. In a bolt factory machines A, B and C manufacture $20 \%, 35 \%$ and 45% of the total of their outputs $5 \%, 4 \%$ and 2% are defective. A bolt is drawn at random found to be defective. What is the probability that it is from machine B?
(07 Marks)
7 a. A random variable x has the following distribution :

$\mathrm{x}:$	-2	-1	0	1	2	3	4
$\mathrm{P}(\mathrm{x}):$	0.1	0.1	k	0.1	2 k	k	k

Find k, mean and S.D of the distribution.
(06 Marks)
b. The probability that a bomb dropped hits the target is 0.2 . Find the probability that out of 6 bombs dropped i) exactly 2 will hit the target ii) atleast 3 will hit the target.
(07 Marks)
c. Find the mean and variance of the exponential distribution.
(07 Marks)
8 a. A die is tossed 960 times and 5 appear 184 times. Is the die biased?
(06 Marks)
b. Nine items have values $45,47,50,52,48,47,49,53,51$. Does the mean of these differ significantly from assumed of mean of 47.5. $\left(\gamma=8, \mathrm{t}_{0.05}=2.31\right)$.
(07 Marks)
c. A set of 5 similar coins tossed 320 times gives following table.

No. of heads :	0	1	2	3	4	5
Freq.	6	27	72	112	71	32

Test the hypothesis that data follows binomial distribution (Given $\gamma=5, \chi_{0.05}^{2}=11.07$)
(07 Marks)
\square
Fourth Semester B.E. Degree Examination, June/July 2015 Graph Theory and Combinatorics
Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

1 a. For the following graph determine,
i) A walk from b to d that is not a trail
ii) A b-d trail that is not a path
iii) A path from b to d
iv) A closed walk from b to b that is not a circuit
v) A circuit from b to b that is not a cycle
vi) A cycle from b to b.
(06 Marks)

Fig.Q1(a)
b. Define subgraph, spanning subgraph, induced subgraph and complete graph with example.
(07 Marks)
c. Prove that the undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ has an Euler circuit if and only if G is connected and every vertex in G has even degree.
(07 Marks)
2 a. Define planar graph and prove that the following Petersen graph is nonplanar using Kuratowski's theorem.
(06 Marks)

Fig.Q2(a)
b. Prove that in a complete graph with n -vertices, where n is an odd number ≥ 3, there are ($\mathrm{n}-1$)/2 edge - disjoint Hamiltonian cycles.
(07 Marks)
c. Find the chromatic polynomial for the following graph.
(07 Marks)

Fig.2Q(c)
1 of 3

3
a. Prove that in every tree $\mathrm{T}=(\mathrm{V}, \mathrm{E})|\mathrm{V}|=|\mathrm{E}|+1$.
(06 Marks)
b. i) If $T_{1}=\left(V_{1}, E_{1}\right)$ and $T_{2}=\left(V_{2}, E_{2}\right)$ be two trees where $\left|\mathrm{E}_{1}\right|=17$ and $\left|\mathrm{V}_{2}\right|=2\left|\mathrm{~V}_{1}\right|$, then find $\left|\mathrm{V}_{1}\right|,\left|\mathrm{V}_{2}\right|$ and $\left|\mathrm{E}_{2}\right|$
ii) Let $\mathrm{F}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ is a forest with $\left|\mathrm{V}_{2}\right|=62$ and $\left|\mathrm{E}_{2}\right|=51$, how many trees determine F_{2}
iii) Let $\mathrm{F}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ be a forest of 7 trees where $\left|\mathrm{E}_{1}\right|=40$ what is $\left|\mathrm{V}_{1}\right|$?
(07 Marks)
c. Construct an optimal prefix code for the symbols a, o, q, u, y, z that occur with frequencies $20,28,4,17,12,7$ respectively.
(07 Marks)

4 a. Using the Kruskal's algorithm, find a minimal spanning tree of the following weighted graphs.
(06 Marks)

Fig.Q4(a)
b. Using the Dijkstra's algorithm obtain the shortest path from vertex 1 to each of the other vertices in the following graph.
(07 Marks)

Fig.Q4(b)
c. Prove that in a bipartite graph $G\left(V_{1}, V_{2}, E\right)$ if there is a positive integer M such that the degree of every vertex in $V_{1} \geq M \geq$ the degree of every vertex in V_{2}, then there exists a complete matching from V_{1} to V_{2}.
(07 Marks)

PART - B

a. i) How many arrangements all there for all letters in the word SOCIOLOGICAL?
ii) In how many of these arrangements, A and G are adjacent?
iii) In how many of these arrangements, all the vowels are adjacent?
(06 Marks)
b. Determine the co-efficient of :
i) $x^{9} y^{3}$ in the expansion of $(2 x-3 y)^{12}$
ii) $x \cdot y \cdot z^{2}$ in the expansion of $(2 x-y-z)^{4}$
iii) $x^{2} \cdot y^{2} \cdot z^{3}$ in the expansion of $(3 x-2 y-4 z)^{7}$.
(07 Marks)
c. Determine the number of integer solutions for: $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}<40$,

Where :
i) $\mathrm{x}_{\mathrm{i}} \geq 0,1 \leq \mathrm{i} \leq 5$
ii) $\mathrm{x}_{\mathrm{i}} \geq-3,1 \leq \mathrm{i} \leq 5$.
(07 Marks)

6 a. Find the number of integers between 1 to 10,000 inclusive, which are divisible by none of 5,6 or 8 .
(06 Marks)
b. Determine in how many ways can the letters in the word ARRANGEMENT be arranged so that there are exactly two pairs of consecutive identical letters.
(07 Marks)
c. i) Find the rook polynomial for the shaded chessboard

Fig. Q6(c)(i)
ii) Let $A=\{1,2,3,4\}$ and $B=\{u v, w, x, y, z\}$. How many one to one functions $f: A \rightarrow B$ satisfy none of the following conditions:
$C_{1}: f(1)=u$ orv $; \quad C_{2}: f(2)=w ; \quad C_{3}: f(3)=w$ or $x ; \quad C_{4}: f(4)=x, y$ or $z . \quad$ (07 Marks)
7 a. Find the coefficient of x^{15} in $\frac{(1+x)^{4}}{(1-x)^{4}}$.
(06 Marks)
b. A ship carries 48 flags, 12 each of the colors red, white, blue and black. Twelve of these flags are placed on a vertical pole inorder to communicate a signal to other ships. Determine, how many of these signals have atleast three white flags or no white flags at all. (07 Marks)
c. Find the formula to express : $0^{2}+1^{2}+2^{2}+\cdots--+n^{2}$ as a function of n using summation on operator.
(07 Marks)
8
a. Solve the recurrence relation $\mathrm{F}_{\mathrm{n}+2}=\mathrm{F}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{n}}$ where $\mathrm{n} \geq 0$ and $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=1$. (06 Marks)
b. i) A bank pays 6% interest compounded quarterly. If Laura invests $\$ 100$ then how many months must she wait for her money to double?
ii) The number of bacteria in a culture is 1000 and this number increases 250% every 2 hours. Use a recurrence relation to determine the number of bacteria present after one day,
(07 Marks)
c. Solve the recurrence relation : $a_{n+2}-5 a_{n+1}+6 a_{n}=2, n \geq 0, a_{0}=3, a_{1}=7$ using method of generating functions.
(07 Marks)

USN \square

Fourth Semester B.E. Degree Examination, June/July 2015 Design and Analysis of Algorithms

Time: 3 hrs.

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A
1 a. Discuss the various stages of algorithm design and analysis process using a flow chart.
(10 Marks)
b. Prove that: If $\mathrm{t}_{1}(\mathrm{n}) \in \mathrm{O}\left(\mathrm{g}_{1}(\mathrm{n})\right)$ and $\mathrm{t}_{2}(\mathrm{n}) \in \mathrm{O}\left(\mathrm{g}_{2}(\mathrm{n})\right)$, then $\mathrm{t}_{1}(\mathrm{n})+\mathrm{t}_{2}(\mathrm{n}) \in \mathrm{O}\left(\max \left\{\mathrm{g}_{1}(\mathrm{n}), \mathrm{g}_{2}(\mathrm{n})\right\}\right)$.
(06 Marks)
c. Consider the following algorithm :

$$
\begin{aligned}
& \text { Algorithm Mystery (n) } \\
& \text { //input : A non negative integer n } \\
& \mathrm{S} \leftarrow 0 \\
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \quad \mathrm{S} \leftarrow \mathrm{~S}+\mathrm{i} * \mathrm{i} \\
& \text { return } \mathrm{S}
\end{aligned}
$$

i) What does this algorithm compute?
ii) What is its basic operation?
iii) How many times is the basic operation executed?
iv) What is the efficiency class of this algorithm?
(04 Marks)
2 a. Write merge sort algorithm and discuss its efficiency. Sort the list E, X, A, M, P, L, E in alphabetical order using the merge sort.
(10 Marks)
b. Design an algorithm for binary search, give an example. Show that the worst case efficiency of binary search is $\theta(\log n)$.
(10 Marks)
3 a. Solve the following instance of knapsack problem using greedy algorithm. Knapsack weight $\mathrm{M}=20$.
(04 Marks)

Item	1	2	3
Weight	18	15	10
Profit	25	24	15

b. Using the prim's algorithm, determine the minimum cost spanning tree for the graph of Fig. Q3(b).
(08 Marks)

Fig.Q3(b)

c. Design the Dijkstra's algorithm and apply the same to find the single source shortest paths problem for the graph taking vertex ' a ' as source in Fig. Q3(c).
(08 Marks)

Fig.Q3(c)

1 of 2

4 a. Define transitive closure of a graph. Write Warshall algorithm to compute transitive closure of a directed graph. Apply the same on the graph defined by the following adjacency matrix.

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

(10 Marks)
b. Using Floyd's algorithm, find all pair shortest path for the graph of Fig. Q4(b).
(06 Marks)

Fig.Q4(b)

c. Write a note on travelling sales person problem.
(04 Marks)

PART - B

5 a. Write insertion sort algorithm. Apply it to arrange the following numbers in increasing order 89, 45, 68, 90, 29, 34, 17.
(08 Marks)
b. Design a BFS algorithm to check the connectivity of a given graph.
(08 Marks)
c. What is time-space trade off of an algorithm?
(04 Marks)
6 a. Write short notes on :
i) Tight lower bound
ii) Trivial lower bound
iii) Information-theoretic lower bounds.
(12 Marks)
b. Define decision tree? Draw the decision tree to sort the elements using insertion sort.
(08 Marks)
7 a. Write the pseudo code for backtracking algorithm. Apply backtracking to solve the instance of the sum of subset problem : $S=\{3,5,6,7\}$ and $d=15$.
(10 Marks)
b. With the help of a state space tree, solve the travelling salesman problem of Fig. Q7(b), using branch-and-bound algorithm.
(10 Marks)

Fig.Q7(b)

8 a. What is prefix computing problem? Write the algorithms for prefix computation which uses: i) n processors
ii) $n / \log n$ processors.
(10 Marks)
b. Let the input to the prefix computation problem be $5,12,8,6,3,9,11,12,1,5,6,7,10,4$, 3, 5, and Let \oplus stand for addition. Solve the problem using work optimal algorithm.
(10 Marks)
\square

Fourth Semester B.E. Degree Examination, June/July 2015 UNIX and Shell Programming

Time: 3 hrs .
Max. Marks: 100

> Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Explain the architecture of UNIX operating system with a neat diagram.
(08 Marks)
b. Illustrate with a diagram, the typical UNIX file system and explain different types of files supported in UNIX.
(08 Marks)
c. Explain internal and external commands with example.
(04 Marks)

2 a. Which command is used for listing file attributes? Briefly describe the significance of each field of the output.
(08 Marks)
b. A file's current permissions are $\mathrm{rw}-\mathrm{r}-\mathrm{xr}--$. Specify the chmod expression required to change them for the following :
i) rWxrwxrwx
ii) $\mathrm{r}--\mathrm{r}-----$
iii) ----------

Using both the relative and absolute methods of assigning permissions.
(06 Marks)
c. What are the different modes of vi editor? Explain with a diagram.

3 a. Explain the three standard files with respect to UNIX operating system.
(06 Marks)
b. Explain the mechanism of process creation using system calls in UNIX.
(06 Marks)
c. Explain the following environment variables with examples :
i) SHELL
ii) LOGNAME
iii) PATH
iv) PS2.
(08 Marks)

4 a. Distinguish between hard links and soft links with suitable examples.
(06 Marks)
b. Explain the following filters with options :
i) pr
ii) sort.
(08 Marks)
c. Use find command to locate from your home directory :
i) All files with the extension $\cdot \mathrm{html}$
ii) All flies having inode number 9076
iii) All directories having permissions 666
iv) All files not accessed for more than a year
v) All but the C program files
vi) All files named $a \cdot o u t$ and all " C " source files and remove them interactively.
(06 Marks)

PART - B

5 a. Explain grep command with all options.
(08 Marks)
b. Briefly explain the different ways of addressing used in sed with example.
(06 Marks)
c. Explain BRE (Basic Regular Expression) character subset used for constructing regular expressions.
(04 Marks)
d. Write the commands for the following :
i) Use sed to delete all blank lines from a file named sample
ii) Use sed to replace all occurrences of the word "UNIX" with "LINUX" in a file named sample.
(02 Marks)

6 a. What is shell programming? Write a menu - driven shell script to perform the following :
i) List of users who are logged in
ii) List of files in the current directory
iii) Today's date
iv) Quit to UNIX.
(08 Marks)
b. Explain with an example "while" and "for" loop in shell programming.
(06 Marks)
c. Briefly explain set and shift commands in UNIX to manipulate positional parameters with example.
(06 Marks)

7 a. What is AWK? Explain any three built - in functions in AWK.
(07 Marks)
b. Explain associative arrays in AWK.
c. Explain built - in variables in AWK.
(07 Marks)

8 a. Explain the string handling functions supported by PERL and also write a PERL script to convert a given decimal number to binary equivalent.
(12 Marks)
b. Explain the following in PERL with example :
i) split
ii) join.
(08 Marks)

10CS45

Fourth Semester B.E. Degree Examination, June/July 2015 Microprocessors

Time: 3 hrs .

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Draw and discuss the Register Organization of 8086 through core 2 microprocessors.
b. Explain the real mode memory addressing of 8086 processor.
(10 Marks)
(10 Marks)
2 a. Define paging. Discuss the memory paging with diagram.
(08 Marks)
b. Explain Data related addressing modes of 8086 , with an example.
(08 Marks)
c. Define physical address. Discuss how physical address is generated in 8086 processor. (04 Marks)

3 a. Explain the following instruction with an example :
i) XLAT
ii) LEA
iii) CMP iv) MUL v) TEST.
(10 Marks)
b. What are assembler directives? Explain the following assembler directives with an example
i) PUBLIC
ii) ORG
iii) DW
iv) ASSUME.
(07 Marks)
c. What is meant by segment override prefix? Explain with examples.
(03 Marks)

4 a. Discuss shift and rotate instructions, with an example. (08 Marks)
b. Explain FAR procedure and near procedure with an example. (06 Marks)
c. Write an assembly level program to reverse a given string and check for palindrome
(06 Marks)

PART - B

5 a. What are the differences between a PROCEDURE and a MACRO?
(04 Marks)
b. Write an 8086 ALP using DOS interrupt to read a two hexadecimal number and display the same on monitor.
(08 Marks)
c. Define Modular programming. Explain various phases in program development and execution in the context of modular programming.
(08 Marks)
6 a. Explain the functions of the following 8086 signals :
(06 Marks)
i) ALE
ii) $\mathrm{MN} / \mathrm{MX}$
iii) NMI iv) QS0, QS1
v) RESET
vi) $\mathrm{DT} / \overline{\mathrm{R}}$
b. Indicate the signals which are different when 8086 in minimum mode and in maximum mode.
(04 Marks)
c. Describe the working of 8086 in minimum mode configuration.
(10 Marks)
7 a. Discuss in brief commonly used memories.
(08 Marks)
b. With neat diagram, explain the Linear decoding techniques.
(08 Marks)
c. Compare and contrast the memories mapped I/O to I/O mapped I/O.
(04 Marks)
8 a. Draw and discuss the Interrupt structure of 8086.
(06 Marks)
b. With functional block diagram, explain working principle of 8255 PPI.
(08 Marks)
c. Discuss the DMA controller operating in a microprocessor system.
(06 Marks)

Fourth Semester B.E. Degree Examination, June/July 2015 Computer Organization

Time: 3 hrs .
Max. Marks:100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. With a neat diagram, explain the different processor registers.
(08 Marks)

2 a. What is an addressing mode? Explain any four addressing modes, with an example for each.
b. Explain shift and rotate operations with example.
(08 Marks)
(08 Marks)
c. Explain Big - endian and Little - endian method of byte addressing with an example.
(04 Marks)
3 a. Define Exceptions. Explain two kinds of exceptions
(04 Marks)
b. Define bus arbitration. Explain in detail any one approach of bus arbitration.
(08 Marks)
c. Draw and explain the general 8 bit parallel processing.
(08 Marks)
a. Explain the following with respect to USB
i) USB Architecture
ii) USB Addressing iii) USB Protocols.
(09 Marks)
b. Briefly discuss the main phases involved in the operation of SCSI bus.
(06 Marks)
c. Explain distributed Bus arbitrations.
(05 Marks)

PART - B

5
a. Define : i) Memory Latency
ii) Memory bandwidth
iii) Hit - rate
iv) Miss Penalty.
(04 Marks)
b. Explain the different cache mapping functions.
(10 Marks)
c. Explain any one feature of memory design that leads to improved performance of computer.
(06 Marks)
6 a. With a neat diagram, explain the virtual memory organization.
(08 Marks)
b. Design a logic circuit to perform addition / subtraction of two ' n ' bit numbers X and Y .
(04 Marks)
c. Explain Booth Algorithm. Apply Booth Algorithm to multiply the signed numbers +13 and -6 .
(08 Marks)
7 a. Explain the different arithmetic operations on floating point numbers.
(06 Marks)
b. Perform division of number 8 by $3(8 \div 3)$ using the restoring division algorithm. ($\mathbf{0 6}$ Marks)
c. Explain the process of fetching a word from memory along with a timing diagram.
(08 Marks)
8 a. Briefly explain the structure of General Purpose Multiprocessor.
(08 Marks)
b. List different types of Networks. Explain any four.
(08 Marks)
c. Give a brief description on performance consideration with an example.
(04 Marks)

MATDIP401

Fourth Semester B.E. Degree Examination, June/July 2015 Advanced Mathematics - II

Time: 3 hrs .
Max. Marks:109
Note: Answer any FIVE full questions.
1 a. Find the angle between 2 diagonals of a cube.
(06 Marks)
b. If $\mathrm{A}(096), \mathrm{B}(123), \mathrm{C}(7-25)$ are vertices of a triangle. Find the coordinates of the foot of the perpendicular drawn from A to BC .
(07 Marks)
c. Find the equation of the plane in the Intercept form $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=$
(07 Marks)

2 a. Find the equation of the plane passing through the three points $(2,3,4),(-3,5,1)(4,-1,2)$. (06 Marks)
b. Find the equation of the plane through the points $(1,2,-1)$ and perpendicular to the planes $x+y-2 z=5$ and $3 x-y+4 z=12$.
(07 Marks)
c. Find the equation of the plane through the point $\leqslant\left(\frac{1}{2}, 2,0\right)$ and containing the plane $2 x+3 y+5 z-1=0$ and $3 x+y-z+2=0$.
(07 Marks)
3 a. Find the unit vector parallel to the sumof vector $\vec{A}=2 i+4 j-5 k$ and $\vec{B}=i+2 j+3 k$. (06 Marks)
b. Determine λ such that $\vec{A}=i+j+N, \vec{B}=2 i-4 k . \vec{C}=i+\lambda j+3 k$ are coplanar.
(07 Marks)
c. Prove that $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c} \cdot \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$.
(07 Marks)
4
a. Prove that $\frac{d}{d t}[\vec{F} \cdot \vec{G}] \Rightarrow \vec{F} \cdot \frac{d \vec{G}}{d t}+\frac{d \vec{F}}{d t} \cdot \overrightarrow{\mathrm{G}}$.
(06 Marks)
b. Find the velocify and acceleration for the curve $\vec{r}=\left(1-t^{3}\right) i+\left(1+t^{2}\right) j+(2 t-5) k$ at $t=1$ and also find their magnitude.
(07 Marks)

(07 Marks)
5 a. Find the directional derivative of $\phi=x^{2} y z+4 x^{2}$ at $(1,-2,-1)$ along $2 i-j-2 k$. (06 Marks) b. If $\vec{F}=(x+y+1) i+j-(x+y) k$. Find \vec{F}.curl \vec{F}.
(07 Marks)
C. Show that $\nabla \cdot(\nabla \times \overrightarrow{\mathrm{A}})=0$.
(07 Marks)
a. Find $L f(t)$ given that $f(t)=\left\{\begin{array}{cc}t ; & 0<t<4 \\ 5 ; & t>4\end{array}\right.$
(05 Marks)
b. Find i) $L\left[e^{3 t} \sin 5 t \sin 3 t\right]$
ii) $L\left[t^{5} \cosh 3 t\right]$
iii) $L\left[t^{3} e^{-3 t}\right]$.
(15 Marks)
a. Find $\mathrm{L}\left[\frac{1-\mathrm{e}^{\mathrm{t}}}{\mathrm{t}}\right]$.
(05 Marks)
b. Find i) $L^{-1}\left[\frac{4 s+5}{(s-1)^{2}(s+2)}\right] \quad$ ii) $L^{-1}\left[\frac{4 s+15}{16 s^{2}-25}\right] \quad$ iii) $L^{-1}\left[\frac{s}{s^{2}-6 s+9}\right]$.
(15 Marks)

8 a. Using Laplace transform solve :

$$
\frac{\mathrm{dzy}}{\mathrm{dt}^{2}}+4 \frac{\mathrm{dy}}{\mathrm{dt}}+3 \mathrm{y}=\mathrm{e}^{\mathrm{t}} \quad ; \quad \mathrm{y}(0)=0 \quad \mathrm{y}^{\prime}(0)=1
$$

(10 Marks)
b. Solve using Laplace transformation method $y^{\prime \prime}+2 y^{\prime}-3 y=\sin t, \quad y(0)=y^{\prime}(0)=0$.
